Peru cities list with latitude and longitude in CSV, XML, SQL, JSON format
Last update : 13 December 2024.
Below is a list of 100 prominent cities in Peru. Each row includes a city's latitude, longitude, region and other variables of interest. This is a subset of all 39062 places in Peru that you'll find in our World Cities Database. You're free to use the data below for personal or commercial applications. The data below can be downloaded in .csv, .json, .xml and .sql formats. Notable Cities: The capital of Peru is Lima.
Geoname_ID | City | Alternate_Name | Country_Code | Region | Sub_region | Latitude | Longitude | Elevation | Population | Timezone | Fcode_Name |
---|---|---|---|---|---|---|---|---|---|---|---|
11515874 | Sachavacayoc | Sachavacayoc | PE | Madre de Dios | Provincia de Tambopata | -12.85012 | -69.36039 | 0 | America/Lima | populated place | |
6674913 | Shayllo | PE | Junin | Provincia de Jauja | -11.52367 | -75.31241 | 0 | America/Lima | populated place | ||
3965982 | Chetja Jala | PE | Puno | Provincia de Carabaya | -14.35052 | -69.89057 | 0 | America/Lima | populated place | ||
6369317 | Yanaccasa | PE | Huancavelica | Huaytara | -13.71861 | -75.0125 | 0 | America/Lima | populated place | ||
6304870 | Huampumayo | PE | Huanuco | Puerto Inca | -9.84699 | -75.38215 | 0 | America/Lima | populated place | ||
3965137 | Parobamba | PE | Ayacucho | Provincia de La Mar | -13.20922 | -73.88633 | 38 | America/Lima | populated place | ||
6278785 | Morupa | PE | Loreto | Provincia de Maynas | -3.47091 | -72.63425 | 0 | America/Lima | populated place | ||
6309092 | Sonoca | PE | Apurímac | Provincia de Andahuaylas | -13.61917 | -73.07111 | 70 | America/Lima | populated place | ||
3927087 | Torre Blanca | Hacienda Torre Blanca,Torre Blanca,Torre Blanca Hacienda | PE | Lima region | Provincia de Huaral | -11.54333 | -77.26 | 384 | America/Lima | populated place | |
3695660 | La Piedra | PE | Lambayeque | Provincia de Lambayeque | -6.56667 | -79.88333 | 469 | America/Lima | populated place | ||
6560981 | Uchubamba | PE | Junin | Provincia de Jauja | -11.4512 | -75.25348 | 33 | America/Lima | populated place | ||
3944598 | Chahuaña | Chahuana,Chahuaña | PE | Arequipa | Provincia de Castilla | -15.10268 | -72.19111 | 0 | America/Lima | populated place | |
6310251 | Cucho | PE | Puno | Provincia de Chucuito | -16.79415 | -69.2851 | 0 | America/Lima | populated place | ||
6664133 | Capusa | PE | Ancash | Ocros | -10.38657 | -77.48689 | 0 | America/Lima | populated place | ||
3931282 | Pungo | PE | Arequipa | Provincia de Caylloma | -15.68 | -71.94722 | 0 | America/Lima | populated place | ||
3945265 | Cashacoto | PE | Ancash | Ocros | -10.37373 | -77.42976 | 5 | America/Lima | populated place | ||
3925805 | Yanahuara | PE | Moquegua | Provincia de General Sánchez Cerro | -16.13108 | -70.55403 | 242 | America/Lima | populated place | ||
6304734 | San José | PE | Pasco | Provincia de Oxapampa | -10.13278 | -75.30639 | 29 | America/Lima | populated place | ||
3937474 | Jupayccocha | PE | Pasco | Provincia de Daniel Carrión | -10.47892 | -76.67131 | 0 | America/Lima | populated place | ||
7543967 | Alto Juñao | PE | San Martín | Provincia de Mariscal Cáceres | -7.25056 | -76.69191 | 0 | America/Lima | populated place | ||
3762188 | El Alvarado | PE | Cajamarca | Provincia de Jaén | -5.99833 | -79.16722 | 0 | America/Lima | populated place | ||
3962737 | Chuncacocha | PE | Lima region | Huaura | -10.91737 | -76.7007 | 0 | America/Lima | populated place | ||
3696840 | Gualingas | PE | Cajamarca | Provincia de Jaén | -5.96667 | -78.93333 | 0 | America/Lima | populated place | ||
3926602 | Ucutuyoc | PE | Junin | Provincia de Chupaca | -12.14574 | -75.46707 | 0 | America/Lima | populated place | ||
3760839 | Sargento Puño | PE | Loreto | Datem del Marañón | -3.22139 | -77.59972 | 59 | America/Lima | populated place | ||
11792782 | Tumapirhua | Hacienda Toma Perua,Tumapirhua | PE | Puno | Provincia de Huancané | -15.04498 | -69.35591 | 85 | America/Lima | populated place | |
3695888 | La Esperanza | PE | Lambayeque | Provincia de Lambayeque | -5.90836 | -79.81595 | 0 | America/Lima | populated place | ||
11512973 | Tabocal | Tabocal | PE | Madre de Dios | Provincia de Tahuamanú | -11.20368 | -69.58241 | 0 | America/Lima | populated place | |
9819647 | Alto Pichanaki | Alto Pichanaki | PE | Junin | Chanchamayo | -10.98164 | -74.97326 | 0 | America/Lima | populated place | |
3936457 | Lilpaya | PE | Lima region | Provincia de Huarochirí | -12.05 | -76.26667 | 17 | America/Lima | populated place | ||
3950515 | Pumachiri | PE | Arequipa | Provincia de Caylloma | -15.60199 | -71.65856 | 0 | America/Lima | populated place | ||
6403273 | Sumacpampa | PE | Huanuco | Provincia de Huánuco | -10.06278 | -76.57222 | 0 | America/Lima | populated place | ||
6385090 | Yargo | PE | La Libertad | Provincia de Pataz | -8.25917 | -77.41361 | 0 | America/Lima | populated place | ||
3965978 | Chilliutera | PE | Puno | Provincia de Carabaya | -14.3545 | -69.93686 | 0 | America/Lima | populated place | ||
3937628 | Jihuane | PE | Ayacucho | Provincia de Sucre | -14.35611 | -73.58806 | 0 | America/Lima | populated place | ||
3958784 | Guan Pata | PE | Ayacucho | Provincia de Sucre | -14.11722 | -73.86112 | 0 | America/Lima | populated place | ||
3967401 | Cabrerio | PE | Lima region | Provincia de Huaral | -11.10556 | -76.64944 | 0 | America/Lima | populated place | ||
3934923 | Minas Chico | PE | Lima region | Barranca | -10.8992 | -77.48684 | 0 | America/Lima | populated place | ||
3941699 | Cunca Huayllo | Cunca Huayllo,Cuncahuaylla | PE | Ayacucho | Provincia de Huamanga | -13.28111 | -74.39648 | 0 | America/Lima | populated place | |
3937789 | Jatunhuasi | Jahunhuasi,Jatunhuasi | PE | Junin | Provincia de Concepción | -12.08333 | -75.63333 | 0 | America/Lima | populated place | |
11792202 | Queduani | Queduani | PE | Puno | San Antonio De Putina | -14.53507 | -69.20628 | 0 | America/Lima | populated place | |
6374927 | Tambo | PE | Apurímac | Provincia de Andahuaylas | -13.65221 | -73.53056 | 0 | America/Lima | populated place | ||
6393200 | Nuayracpunco | PE | Cusco | Provincia de Urubamba | -13.24278 | -72.28667 | 0 | America/Lima | populated place | ||
3943522 | Choncorcota | PE | Puno | Provincia de Chucuito | -16.20619 | -69.51187 | 0 | America/Lima | populated place | ||
3941163 | Ensenada | PE | Arequipa | Provincia de Islay | -17.11667 | -71.85 | 0 | America/Lima | populated place | ||
3959426 | San Juan Grande | San Juan Grande | PE | Madre de Dios | Provincia de Manú | -12.60112 | -70.21627 | 255 | America/Lima | populated place | |
3817013 | Sausillo | PE | Piura | Provincia de Sullana | -4.62583 | -80.74694 | 8 | America/Lima | populated place | ||
3960315 | Pampa Blanca | PE | Ica | Provincia de Palpa | -14.21782 | -75.09493 | 47 | America/Lima | populated place | ||
3944389 | Chanchamayo | Chanchamayo | PE | Ica | Provincia de Pisco | -13.68541 | -75.79322 | 2 | America/Lima | populated place | |
3693225 | Puerto José | PE | Loreto | Datem del Marañón | -2.86667 | -76.4 | 0 | America/Lima | populated place | ||
6304424 | Hondo Vado | PE | Junin | Provincia de Chupaca | -12.21194 | -75.57111 | 0 | America/Lima | populated place | ||
3940706 | Fundo Gramadal | Fundo Gramadal,Gramadal | PE | Lima region | Lima | -11.95199 | -77.12434 | 0 | America/Lima | populated place | |
8663421 | Pumtaocco | PE | Huancavelica | Provincia de Tayacaja | -12.44323 | -74.99712 | 0 | America/Lima | populated place | ||
6384942 | Inchan | PE | La Libertad | Provincia de Pataz | -8.15778 | -77.38278 | 84 | America/Lima | populated place | ||
11007452 | El Puquio | El Puquio | PE | Cajamarca | Provincia de Contumazá | -7.33046 | -79.02065 | 0 | America/Lima | populated place | |
6669148 | Tuyun Pampa | PE | Junin | Provincia de Yauli | -11.19867 | -76.47861 | 0 | America/Lima | populated place | ||
6666234 | Tutucocha | PE | Huanuco | Lauricocha | -9.93118 | -76.64482 | 0 | America/Lima | populated place | ||
3961626 | Plazapampa | PE | Lima region | Provincia de Yauyos | -12.53434 | -75.94063 | 0 | America/Lima | populated place | ||
6304469 | Huascacocha | PE | Junin | Provincia de Chupaca | -12.2275 | -75.53056 | 0 | America/Lima | populated place | ||
11511549 | Cipriano Ttito | Cipriano Ttito | PE | Madre de Dios | Provincia de Tahuamanú | -11.81694 | -69.05758 | 0 | America/Lima | populated place | |
3695164 | Los More | Alto de los More,Los More,Los Mores | PE | Piura | Provincia de Piura | -5.33613 | -80.7001 | 0 | America/Lima | populated place | |
3694250 | Omaguas | Omaguas,Omaguas Pendencia | PE | Loreto | Provincia de Maynas | -4.13333 | -73.26667 | 0 | America/Lima | populated place | |
3933313 | Pampa Blanca | PE | Moquegua | Provincia de General Sánchez Cerro | -16.77935 | -71.24626 | 57 | America/Lima | populated place | ||
3941511 | Cuzcuz | Cuz-Cuz,Cuzcuz | PE | Ancash | Provincia de Huarmey | -10.06561 | -78.11924 | 50 | America/Lima | populated place | |
3946322 | Cahuacta | Cahuacta | PE | Arequipa | Provincia de Castilla | -15.24439 | -72.12489 | 9 | America/Lima | populated place | |
3742777 | San Isidro | PE | Cajamarca | Provincia de San Miguel | -6.91311 | -79.15075 | 11 | America/Lima | populated place | ||
6403456 | Patahuasin | PE | Huanuco | Lauricocha | -10.27583 | -76.65556 | 0 | America/Lima | populated place | ||
3932183 | Pirhua | PE | Arequipa | Provincia de Caylloma | -15.30646 | -71.20043 | 0 | America/Lima | populated place | ||
6666040 | Tacta Ucro | PE | Huanuco | Provincia de Dos de Mayo | -9.82755 | -76.81838 | 0 | America/Lima | populated place | ||
3743605 | Puente | PE | Lambayeque | Provincia de Lambayeque | -6.1505 | -79.47758 | 0 | America/Lima | populated place | ||
6304649 | Llihua | PE | Lima region | Provincia de Yauyos | -12.39139 | -75.61111 | 0 | America/Lima | populated place | ||
3952645 | Lluta | PE | Tacna | Provincia de Tacna | -17.83716 | -70.03288 | 0 | America/Lima | populated place | ||
11792737 | Tarucani | Tarucani | PE | Puno | Provincia de Huancané | -15.09318 | -69.48619 | 101 | America/Lima | populated place | |
6379730 | Capiacashca | PE | Ancash | Provincia de Yungay | -9.40222 | -77.95917 | 0 | America/Lima | populated place | ||
3692367 | San Miguel | PE | Huanuco | Provincia de Huánuco | -9.51667 | -76.05 | 0 | America/Lima | populated place | ||
3929197 | Santa Isabel | Santa Isabel,Santa Isabel Hacienda | PE | Ica | Provincia de Ica | -14.06667 | -75.7 | 1 | America/Lima | populated place | |
3761441 | Shita | PE | Piura | Provincia de Huancabamba | -5.76222 | -79.62194 | 0 | America/Lima | populated place | ||
3937039 | La Martinez | PE | Ica | Provincia de Ica | -13.96667 | -75.73333 | 0 | America/Lima | populated place | ||
3939291 | Huarajoccasa | PE | Arequipa | Provincia de Caylloma | -15.14528 | -71.89194 | 0 | America/Lima | populated place | ||
3941059 | Estagagache | PE | Moquegua | Provincia de Mariscal Nieto | -16.73489 | -70.76757 | 4 | America/Lima | populated place | ||
12291499 | Pulpito Alta | Pulpito Alta | PE | Ayacucho | -12.45889 | -73.95291 | 0 | America/Lima | populated place | ||
11087891 | Cahacho | Cahacho | PE | Ica | Provincia de Pisco | -13.63287 | -76.1792 | 0 | America/Lima | populated place | |
10641921 | Joncho | Joncho | PE | Ayacucho | Provincia de Lucanas | -14.63898 | -74.68702 | 0 | America/Lima | populated place | |
8673016 | Niño | Hacienda Nino,Hacienda Niño,Nino,Niño | PE | Ayacucho | Provincia de Huamanga | -13.11875 | -74.1475 | 0 | America/Lima | populated place | |
6670341 | Ruruhuán | PE | Huanuco | Provincia de Huánuco | -9.7604 | -76.23575 | 205 | America/Lima | populated place | ||
8664282 | Orcon Collpa | PE | Junin | Provincia de Huancayo | -12.04501 | -74.78234 | 0 | America/Lima | populated place | ||
3944507 | Challaoco | PE | Puno | El Collao | -16.79005 | -69.84759 | 0 | America/Lima | populated place | ||
3742682 | La Palizada | PE | Cajamarca | Provincia de San Miguel | -6.86564 | -79.0079 | 0 | America/Lima | populated place | ||
3695608 | La Rinconada | La Rinconada | PE | Ancash | Provincia de Santa | -9.03019 | -78.54745 | 0 | America/Lima | populated place | |
3938751 | Huichinca | PE | Puno | Provincia de Puno | -16.12406 | -70.03774 | 0 | America/Lima | populated place | ||
6664457 | Cajón | PE | Ancash | Provincia de Bolognesi | -10.16747 | -77.12025 | 0 | America/Lima | populated place | ||
3752031 | Mamag | PE | Cajamarca | Provincia de Celendín | -6.77578 | -78.20056 | 0 | America/Lima | populated place | ||
6674799 | Illpa | PE | Junin | Provincia de Concepción | -11.71049 | -75.07306 | 0 | America/Lima | populated place | ||
8665074 | Pancarpata | PE | Huancavelica | Provincia de Tayacaja | -12.12565 | -74.62001 | 0 | America/Lima | populated place | ||
3942169 | Corpanto Artieda | Corpanto,Corpanto Artieda | PE | Moquegua | Provincia de Mariscal Nieto | -17.27866 | -70.98339 | 0 | America/Lima | populated place | |
3946434 | Cacacha | PE | Ayacucho | Provincia de Sucre | -14.31667 | -73.7 | 0 | America/Lima | populated place | ||
3927652 | Tayoc | PE | Ayacucho | Provincia de La Mar | -12.98333 | -73.81667 | 0 | America/Lima | populated place | ||
3947877 | Añaza | Anaso,Anaza,Añaso,Añaza | PE | Huancavelica | Huaytara | -13.53426 | -75.01819 | 0 | America/Lima | populated place | |
3694315 | Nueva Olinda | PE | Loreto | Mariscal Ramon Castilla | -4.41616 | -71.28406 | 0 | America/Lima | populated place | ||
8664110 | Marco | PE | Huancavelica | Provincia de Tayacaja | -12.37531 | -74.80179 | 58 | America/Lima | populated place |
**Exploring Peru: Insights from a Geographer**
Nestled in the heart of South America, Peru is a land of unparalleled natural beauty, rich cultural heritage, and geographical diversity. As a geographer delving into the complexities of this enchanting country, the quest for data on its cities, regions, and geographical coordinates unveils a narrative of resilience, exploration, and geographical significance waiting to be uncovered.
Cities of Peru: Anchors of History and Progress**
Peru's cities are not just urban centers but living testaments to the country's rich history and ongoing development. From the bustling streets of Lima, the capital city and economic hub, to the colonial charm of Cusco and the coastal allure of Arequipa, each urban enclave reflects a unique blend of tradition and modernity. Obtaining data on these cities offers insights into their population dynamics, economic activities, and cultural landmarks that shape the Peruvian landscape.
Regions and Departments of Peru: Exploring the Country's Geographical Tapestry**
Beyond the urban sprawl, Peru's regions and departments showcase the country's diverse landscapes and ecosystems. From the majestic peaks of the Andes Mountains to the lush Amazon rainforest and the arid deserts of the coast, each region boasts its own unique natural beauty and cultural heritage. Gathering data on these regions provides a deeper understanding of their environmental resources, biodiversity, and socio-economic dynamics, crucial for sustainable development in Peru.
Latitude and Longitude of Peru: Navigating the Country's Coordinates**
As a geographer, obtaining precise latitude and longitude data for each city of Peru is essential for understanding its geographical layout and spatial distribution. These coordinates serve as navigational markers, guiding explorers through the country's diverse terrain and waterways. From the ancient ruins of Machu Picchu to the remote villages of the Andean highlands and the pristine beaches of the Pacific coast, each point on the map tells a story of geographical significance and cultural heritage, shaping Peru's identity as a land of exploration and adventure.
Conclusion: Mapping Peru's Geographical Essence**
In the pursuit of data on Peru's cities, regions, and geographical coordinates, a deeper narrative emerges—one of resilience, diversity, and geographical significance. It is a narrative that celebrates the intrinsic connection between the Peruvian people and their natural surroundings, reflecting a profound respect for the land and its resources. As a geographer, unraveling this tapestry of geographical intricacies is not just a scholarly pursuit but a journey of discovery and appreciation for the wonders of our planet.
Peru beckons—a land of endless exploration, waiting to be understood, cherished, and celebrated for its geographical marvels and cultural treasures.
Download data files for Peru's cities in CSV, SQL, XML and JSON formats
Mapping the Geography of Peru: A Comprehensive Data Approach for Urban and Regional Planning
Peru, a country rich in history, culture, and natural beauty, boasts a diverse and complex geography that shapes its urban development and economic activities. From the towering Andes mountains to the lush Amazon rainforest, and the Pacific coastline, Peru’s physical landscape is as varied as its regional divisions. As a geographer, the task of understanding how cities, regions, and departments are distributed across these diverse environments is essential for effective urban planning, resource management, and environmental sustainability. The availability of accurate geographic data, including the latitude and longitude of cities, is crucial for analyzing these spatial relationships and guiding development in a way that balances urban growth with environmental preservation.
The Administrative and Geographical Structure of Peru
Peru is divided into 26 regions (or departments) and one constitutional province, Lima. Lima, the capital city, serves as both the political and economic heart of the nation. Each of Peru's regions has its own unique geographical features, including the high-altitude Andean mountain ranges, vast deserts, and the tropical rainforest that dominates the eastern part of the country. Some key regions include Arequipa, Piura, and Cusco, each known for its cultural significance and economic contributions.
The country's geography significantly influences urbanization patterns. The western coastal regions, such as Lima, are highly urbanized due to their proximity to the Pacific Ocean, while the Andean highlands and Amazonian lowlands are less densely populated, with more rural communities. Understanding the relationship between cities, rural areas, and natural resources is essential for designing policies that address regional disparities and foster balanced development across the country.
Latitude and Longitude: Mapping Peru’s Cities and Regions
Latitude and longitude are fundamental tools for mapping and analyzing the cities and regions of Peru. By obtaining precise coordinates for key cities such as Lima, Cusco, Arequipa, and Trujillo, geographers can map out how these urban centers are positioned in relation to natural features such as rivers, mountains, and forests.
For example, knowing the exact latitude and longitude of Lima allows for a comprehensive analysis of the city's role as an economic hub, its access to the Pacific Ocean, and its connection to other regions within the country. Similarly, the coordinates of Cusco provide insights into its location in the heart of the Andes, a critical point for tourism and historical preservation, especially given its proximity to the ancient Incan city of Machu Picchu.
Latitude and longitude data also helps to identify regions of the country that may face specific challenges related to geography. For instance, understanding the coordinates of cities in the Amazon basin allows researchers to examine how proximity to natural resources influences urban growth and infrastructure development in the region. These geographic coordinates also support disaster management strategies, particularly in areas prone to earthquakes, floods, or landslides, by providing accurate data for risk assessments and response planning.
The Value of Geographic Data in Multiple Formats
To maximize the utility of geographic data for research, urban planning, and policy development, it is essential that the data be made available in various formats that suit different analytical tools and platforms. By providing geographic data for Peru’s cities, regions, and departments in formats such as CSV, SQL, JSON, and XML, this data can be integrated into multiple systems for enhanced decision-making.
- **CSV (Comma-Separated Values):** CSV files are one of the most widely used formats for organizing and storing geographic data. This format allows for easy storage of information like city names, populations, coordinates, and other essential metrics. CSV files are particularly useful for initial data analysis and visualization, as they can be quickly imported into spreadsheets or mapping software for further processing.
- **SQL (Structured Query Language):** SQL is ideal for working with large, relational datasets. Researchers and urban planners can use SQL to query geographic data, track population growth trends, or analyze urbanization patterns across different regions of Peru. SQL enables detailed spatial analysis by allowing users to run complex queries on various attributes, such as infrastructure, resources, and environmental factors.
- **JSON (JavaScript Object Notation):** JSON is a lightweight and flexible format that is commonly used in web applications and dynamic data systems. By offering geographic data in JSON format, developers can create interactive web maps or real-time data platforms that allow users to explore geographic information about cities, regions, and infrastructure in Peru. JSON is ideal for applications that need to process and display real-time geographic data.
- **XML (Extensible Markup Language):** XML is well-suited for managing complex, hierarchical geographic data. This format is particularly useful for organizing information about administrative boundaries, transportation networks, and environmental features. XML ensures that geographic data can be easily shared and integrated across different platforms, making it ideal for large-scale research projects or collaborative studies.
By offering geographic data in these diverse formats, Peru’s geographic information becomes adaptable to a wide range of uses, from research and development to mobile applications and real-time analysis tools.
A Comprehensive Database for Peru’s Geography
A comprehensive database containing detailed geographic data on Peru’s cities, regions, and departments is an invaluable resource for researchers, urban planners, and policymakers. This database should not only include basic city-level information such as names, population figures, and coordinates but also data on infrastructure, environmental factors, and resource distribution across the country.
For example, comparing cities like Lima, Arequipa, and Cusco can provide insights into how geography influences urban development. Lima, with its coastal location and large population, faces different urbanization challenges compared to cities located in the Andean mountains, such as Cusco. A comprehensive geographic database helps to identify regions where infrastructure development is needed or where environmental protection efforts should be prioritized.
The database should be accessible in multiple formats such as CSV, SQL, JSON, and XML, ensuring that it can be easily integrated into research platforms, urban planning systems, and policy analysis tools. Whether used for analyzing regional growth patterns, managing infrastructure projects, or assessing environmental impacts, this geographic data is crucial for making informed decisions about the future development of Peru.
Conclusion
Peru’s diverse and unique geography presents both challenges and opportunities for urban planning, resource management, and environmental sustainability. By obtaining accurate geographic data on the cities, regions, and departments—including their latitude and longitude coordinates—researchers and policymakers can gain valuable insights into the spatial dynamics of the country. Offering this data in flexible formats such as CSV, SQL, JSON, and XML ensures that it is accessible, adaptable, and useful for a wide range of applications, from infrastructure development to environmental conservation. A data-driven approach to understanding Peru’s geography supports informed decision-making, fosters sustainable development, and helps guide the country toward a balanced and prosperous future.